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We introduce and experimentally validate a computational imaging technique that employs confocal
scanning and coherent detection in the Fourier domain. We show how this method may be used to to-
mographically reconstruct attenuation, aberration, and even occlusion. We also show how these
image parameters may be combined with the conventional confocal image reconstruction of the object
reflectivity. We demonstrate the method experimentally by imaging a sample consisting of an occlusion
above a mirror of varying reflectivity. © 2010 Optical Society of America
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1. Introduction

Optical imaging techniques may be separated into
two categories based on whether image formation
is performed by optical components or computation-
ally with the help of a computer. Confocal microscopy
is the simplest example that straddles these two cat-
egories by using a computer to assemble the three-
dimensional image, whereas each pixel (or voxel)
is formed purely optically by scanning the source re-
lative to the sample [1].
Computational approaches for optical image

formation based on tomographic reconstruction
were developed, along with tomography techniques,
during the past decades. The confocal scanning mi-
croscopy method is sometimes referred to as tomo-
graphy, as it, indeed, forms slices of the image. In
this manuscript, however, we use the term “tomogra-
phy” to refer to more computationally intense and
novel reconstruction methods that we called “compu-
tational confocal tomography.” The key to computed
tomography is the collection of projections of the data

over a range of angles, to produce a Radon transform
of the image [2]. The image of the data is then recon-
structed using an inverse Radon transform tech-
nique, such as filtered backprojection. The vast ma-
jority of development of this method originated in the
field of medical imaging, utilizing x-ray fields [3].
Various optical systems that use collimated light
beams have been developed to produce an optical
analog of the x-ray projection approach, employing
the approximation that the light rays follow straight
lines paths. However, the large amount of scattering
encountered at optical frequencies, as opposed to x
rays, caused difficulty with this assumption. Tech-
niques to more accurately satisfy the small-angle as-
sumption for validity of the Born or Rytov approxi-
mations [4], as well as diffuse optical tomography
[5] methods (at the large scattering-angle extreme)
have been developed and demonstrated.

Of course, scattering properties of the object
vary, depending on the specific application. For
example, for the microscopic imaging of cells, they
pose an opposite problem, as the refractive index var-
iations between many cellular structures are very
small [6]. Fortunately, advances in interferometry
have enabled the measurement of very small phase
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variations [7], and this, in turn, enables poten-
tial imaging of these structures via their refractive
index. Furthermore, Wedberg et al. [8] investigated
some basic examples that show negligible improve-
ment provided by using the Born approximation over
the straight-ray approximation for phase objects,
which lends further credence to this straight-ray
approximation.
Of course, imaging the sample attenuation coeffi-

cient is itself possible by measurement of intensity
instead of phase. Katawa et al. [9] produced images
of spirogyra in a system that essentially achieves ro-
tation of the sample within a collimated beam. This
fairly direct application of computed tomography to
optics is the most common approach. Zysk et al. [10]
demonstrated image formation of a purely refractive
sample, where the data was collected in this fashion.
Their “projected index computed tomography” meth-
od uses standard backprojection techniques to recon-
struct the image under the straight-ray assumption.
Renaud et al. [11] demonstrated a conceptually simi-
lar technique that is called “confocal axial tomogra-
phy,” employing microfluidics to rotate cells within
the light beam. Sharpe et al. [12] also employed rota-
tion of a large size object such that the depth of focus
of the illumination/detection beam had to be taken
into consideration.
Less commonly, systems employ a focused beam.

Kikuchi et al. [13] considered so-called multiple axis
imaging systems, where multiple microscopes with
foci at different angles were intersected, effectively
treating the source near the focus as a very small col-
limated beam. Vishnyakov et al. [14] constructed a
system in which the sample was placed on a mirror
in an interferometer, while the focal point was
scanned along the mirror by displacing the point
source in the conjugate plane, in order to reconstruct
the refractive index. This is done by using the angu-
lar spread of the rays themselves, more akin to cone-
beam tomography. This system is also interesting in
that, unlike those previously discussed, Vishnya-
kov’s system operates in a reflective mode. Lue et al.
[15] described a similar concept that employs a fo-
cused line beam scanned through a sample flowing
in a microfluidic channel, with a cylindrical objec-
tive lens. Marks et al. [16] derive and simulate an
approach to the estimate group refractive index,
wherein they derive a solution for a tomographic
measurement with a high numerical aperture.
These systems also demonstrate the ability to pro-

duce tomographic images of microscopic structures,
such as cellular structures, though the straight-ray
approximation, and for that matter ray optics itself,
becomes less applicable in this microscopic regime.
For example, Vishnyakov et al. [14] produced images
of a lymphocyte. Renaud et al. [11] produced images
of SW13 cells. The approaches used apply, or could be
adapted to apply, to the attenuation and refractive
index of the volume illuminated by the light. But
the physical effects at the focus itself, for the systems
that use a focused beam, are not exploited.

As is the case in confocal microscopy, the ideal
mode for such a system is often reflective, whereby
depth sections of thick samples may be collected. In
confocal microscopy, the focus (of both source and de-
tection objective) is reimaged onto a pinhole that re-
jects light scattered from elsewhere in the sample.
This forms the basis for a variety of imaging tech-
niques. In this paper, we further consider the pro-
blem of performing computational reconstruction of
the sample at the same time as the imaging of the
object at focus. Hence we describe this technique
as “computational confocal,” as we are computation-
ally reproducing the signal at the pinhole. However
instead of rejecting the scattered light outside the
pinhole, we assume that this scatter will be negligi-
ble (except from the focus itself) and instead use the
entire aperture of light, to also reconstruct the sam-
ple volume between the focus and the objective with-
out need for depth scanning. We view the method
described here to be a superset of conventional con-
focal imaging for low scattering situations, which we
believe provides a novel and useful perspective.

This is also the first demonstration, to our knowl-
edge, of the combination of scanned object imag-
ing with computed tomography reconstruction. We
demonstrate the ability to collect data “around” an
occlusion, in order to image the object behind it,
which we believe is a potentially very useful advance
in microscopy.

In this manuscript we show how to use a series of
translational steps during the data collection process
where we collect a high-numerical aperture signal,
rather than collect a series of projections over succes-
sive angles with a collimated beam. In effect, rather
than serially filling out a desired angular range with
a fixed field of view, we fill out a desired field of
view with a fixed angular range. The total collected
angular bandwidth range within each measurement
is determined by the numerical aperture of the mi-
croscope objective, suggesting use of modern high-
numerical aperture objectives to cover large angular
bandwidth.

A diagram of the computational imaging system
that we investigate here is provided in Fig. 1(a),
shown in comparison with a similar confocal three-
dimensional scanning system. It is evident that
our system requires only limited modifications be
made to the conventional confocal imaging system.

Both systems use a collimated laser source that is
focused and is being scanned within the volume of
the object, but in contrast to conventional confocal
microscopy that relies on three-dimensional volume
scanning, our system performs a single scan in the
transverse direction. In our approach the three-
dimensional information is reconstructed from the
collected data. Furthermore, we detect the entire
complex signal of the Fourier transform of the re-
flected field, rather than reimaging the object on a
pinhole and only detecting the intensity of a single
point, as is typically performed in confocal imaging
(this is equivalent to detecting the “DC” spatial fre-
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quency of the object). In effect, while the conven-
tional confocal system samples a single pixel of the
sample volume at each point in the scan, the compu-
tational system collects a range of data over the sam-
ple volume at each step. In Section 2, we will start
from the analysis of our approach by describing how
attenuation and refractive index variation may be
combined with conventional confocal measurements
at the objective focus in a complex attenuation para-
meter, which can be imaged. Section 2 will also show
how the complex confocal image data may be viewed
as a rearrangement of projection data to which tomo-
graphic reconstruction can be applied. In Section 3
we describe the experimental system and apply
the new imaging technique to the experimentally
measured results for a specially made sample to de-
monstrate the simultaneous imaging of an occlusion
and an object with varying reflectivity beyond it. The
conclusions and discussions will be described in
Section 4.

2. Analysis of the Computational Confocal
Tomography System

To analyze the confocal tomography system intro-
duced in Fig. 1(a), first we describe how attenuation,
phase aberrations, and even the scattering or reflec-
tivity at the focal point may all be combined into a
complex attenuation parameter that can be imaged
as discussed and quantified below.

A. Complex Attenuation Parameter

We simplify the computational system of Fig. 1(a)
further by projecting the pixel locations of the coher-
ent detector array to the entrance pupil (i.e., aper-
ture) of the microscope objective [see Fig. 2]. We
also neglect the transmission (i.e., illumination) path
and assume that we start from a point source located
at the focal point of the microscope objective.
For an isotropic scalar spherical wave radiated

from the focus at distance d from the observation
plane, the spatial component of the optical field sig-
nal at any observation point r would be

uðrs; rÞ ¼ A
1

jr − rsj
expfj½kjr − rsj�g; ð1Þ

where A is the value of the amplitude associated with
the strength of the particular scattering point (e.g.,
due to the transmitted amplitude and scattering
cross section), rs is the point-source location, k is 2π=λ
for a monochromatic source with wavelength λ in
vacuum, and j is

ffiffiffiffiffiffi
−1

p
. So A is the value we desire

in normal confocal imaging.
Generally, the sample volume between the focus

and the detector will induce a phase delay and am-
plitude attenuation (i.e., phase and amplitude mod-
ulation) at the detector pixel located at r ¼ rp (see
Fig. 2), yielding

uðrs; rpÞ ¼ aðrs; rpÞA
1

jrp − rsj
expfj½kjrp − rsj

þΔϕðrs; rpÞ�g; ð2Þ

where aðrs; rpÞ is the amplitude attenuation and
Δϕðrs; rpÞ is the phase delay.

Next we combine all the terms into a complex
attenuation coefficient such that Eq. (2) may be
rewritten as

uðrs; rpÞ ¼ expf−μðrs; rpÞg; ð3Þ

μðrs; rpÞ ¼ −j½kjrp − rsj þΔϕðrs; rpÞ� − lnaðrs; rpÞ
− lnAþ ln jrp − rsj: ð4Þ

We further break down this complex attenuation
function into the sample-independent terms μ0 and
sample-induced terms μt, defined by

μðrs; rpÞ ¼ μ0ðrs; rpÞ þ μtðrs; rpÞ; ð5Þ

μ0ðrs; rpÞ ¼ −jkjrp − rsj þ ln jrp − rsj; ð6Þ

μtðrs; rpÞ ¼ −jΔϕðrs; rpÞ − lnaðrs; rpÞ − lnA: ð7Þ

The subscript t refers to the fact that this term con-
tains the tomographic information of the sample.

Fig. 2. Geometry of locations of a virtual detector pixel and its
physical relationship to the point source, which is assumed to
be fixed relative to the detector pixels.

Fig. 1. (a) Computational imaging system versus (b) conventional
scanning confocal system. The dashed lines on the sample repre-
sent the scanning paths of the focal point as the sample is moved
on a translation stage.
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Furthermore, we can describe the phase delay as
the result of the refractive index variation integrated
along the optical path followed by the light “ray” be-
tween rp and rs:

Δϕðrs; rpÞ ¼
Zrp

rs

kΔnðrÞds; ð8Þ

where ΔnðrÞ is nðrÞ − n0, nðrÞ is the varying index of
the sample, and n0 is the medium index for which the
optics is corrected (e.g., air, oil, glass). The integralR
ds refers to the path integral between the points

at the integration limits; the specifics of the followed
paths will be described below. The attenuation re-
sulting from the integrated attenuation coefficient
along the same path is

aðrs; rpÞ ¼ exp
�
−

Zrp

rs

αðrÞds
�
: ð9Þ

So, the complex attenuation function given in Eq. (7)
can be rewritten as

μtðrs; rpÞ ¼ −j
Zrp

rs

kΔnðrÞdsþ
Zrp

rs

αðrÞds − lnA: ð10Þ

Moreover, if we form the impulse function δðrÞ loca-
lized at the point source and employ the integral ex-
pression

Zrp

rs

δðr − rsÞds ¼ 1; ð11Þ

we can define the point-source amplitude A in an
integral form as well:

lnA ¼ ðlnAÞ
Zrp

rs

δðr − rsÞds: ð12Þ

We use Eq. (12) in Eq. (10) and combine all the terms
into a single integral:

μtðrs; rpÞ ¼
Zrp

rs

ηAðr; rsÞds; ð13Þ

ηAðr; rsÞ ¼ −jkΔnðrÞ þ αðrÞ − δðr − rsÞ lnA: ð14Þ

The complex attenuation coefficient describes the at-
tenuation resulting from the sample as an integral

over the path between the point source and the de-
tector pixel.

Our final result combines Eqs. (3), (5), and (13),
yielding the observed complex amplitude of the opti-
cal field given by

uðrs; rpÞ ¼ u0ðrs; rpÞ exp
8<
:−

Zrp

rs

ηAðr; rsÞds
9=
;; ð15Þ

where u0ðrs; rpÞ is the sample-independent signal
from a unit-amplitude source, expf−μ0ðrs; rpÞg. This
is the deterministic component of the signal, which
may be partially or completely eliminated by the mi-
croscope objective itself (particularly the spherical
phase component). Alternatively, it may be detected
and computed during the calibration process of the
system.

Now we reconsider the difference between the
amplitude A, and the attenuation in the sample,
aðrs; rpÞ. We note that ηAðr; rsÞ is a function of rs
purely due to the term δðr − rsÞ lnA, describing the
source location. If we are scanning the sample, then
the value of A, which we recall incorporates the
source amplitude as well as the reflection or scatter-
ing coefficient at the focal point, corresponds to a par-
ticular point in the scan. First we assume that the
focal point locations are known for every point in
the scan (for example, along an object plane). And
second we assume we scan in such a way that a point
at focus is not illuminated when the system scans to
a different focus. Then we may combine the source
amplitudes into a complex attenuation function

ηðrÞ ¼ −jkΔnðrÞ þ αðrÞ −
XM
m¼0

δðr − rsðmÞÞ lnAðmÞ;

ð16Þ

where rsðmÞ andAðmÞ are the focal point location and
the corresponding amplitude for the mth step in the
scan (see Fig. 3). We can treat the complex attenua-
tion function plus the object-plane information as
independent of the focal point under the condition
that none of the rays captured by the detector cross
through multiple focal points. Then projections of
ηAðr; rsÞ and ηðr; rsÞ will be consistent. For transverse
scanning, this requirement would hold, whereas for
axial scanning it would not. Therefore, in the case of
transverse scanning (the technique to be employed in
subsequent sections) we may treat the point-source
amplitude as an attenuation and assume that the
complex attenuation (with the amplitude included)
is independent of the focal point. This will be useful
when we can reconstruct the complex attenuation
and get the amplitude values as part of that result.

B. Scanning Tomography

Next we describe the method for processing the com-
putational confocal scanning data to reconstruct and
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view tomographic projection data. For simplicity, we
assume a one-dimensional detector array and a
one-dimensional scan procedure. We also assume
that during the scanning process, the confocal source
and detector relative to the sample are moved (we
assume the sample is stationary in our analysis, and
the optics is translated) by a fixed distance increment
equal to the separation between pixels in the detec-
tor array, Δx. The vector describing this step is de-
fined by Δx ¼ ðΔx; 0Þ. Thus at the mth step in the
scan, the focal point is at a location

rsðmÞ ¼ rð0Þs þmΔx; ð17Þ

where rð0Þs is the location of the initial focal point. Also
at the mth step in the scan, the nth pixel in the de-
tector array has a coordinate at location

rpðm;nÞ ¼ rð0Þp þmΔxþ nΔx; ð18Þ

and rð0Þp is the coordinate of the location of the initial
pixel at the initial step.
If we consider the complex data collected at each

pixel for each scan step, we can enumerate them as
uðrsðmÞ; rpðm;nÞÞ, or simply um;n [see Fig. 4 and the
matrix representation shown in Fig. 5(a)]. Assuming
that the ray paths are all straight lines, and the sig-
nal is only affected by a phase delay and attenuation,
we can view the data of Fig. 5(a) as a version of the
slant stack of tomographic projection data of the
sample. Since the rays are assumed to follow straight
lines, the focal point has a fixed location relative to
the detectors in the array; hence, the angle between
the focal point and a given detector pixel will be con-
stant over the scan. For example, if we observe the
rays corresponding to the column [n ¼ 2 in Fig. 5(a)],
they collectively form a projection of the sample at a
fixed direction angle, as shown in Fig. 5(b).
By combining Eqs. (17) and (18) with Eq. (15), we

obtain

um;n ¼ u0;m;n exp

8>><
>>:
−

Zrð0Þp þmΔxþnΔx

rð0Þs þmΔx

ηðrÞds

9>>=
>>;
: ð19Þ

Next we define p0ðxÞ, the projection of ηðrÞ:

p0ðxÞ ¼
Z∞

−∞

ηðx; zÞdz: ð20Þ

Note that, since the detector pixels are always in the
same plane, the projections we form at different an-
gles are technically not rotated, but sheared. Figure 6
shows how a sheared version of the sample provides
a zero-angle projection. The sheared projection
would then be

pθðxÞ ¼
Z∞

−∞

ηðx − z tan θ; zÞdz: ð21Þ

Fig. 3. Definition of the sample as a complex attenuation function
ηðrÞ, which includes the point-source amplitudes in the focal plane
of the microscope objective.

Fig. 4. Schematic diagram describing the detector pixels and the
focal point locations at three different steps in a one-dimensional
confocal scan of a two-dimensional sample. This example shows
four pixels of the photodetector array and three scanning points
of the object.

Fig. 5. (a) Matrix representation of the complex data from all pix-
els over all steps in the scanning process for the example of Fig. 4
for a four-pixel, three-step scan. (b) Rays corresponding to the ðn ¼
2Þ column of the slant-stack data.
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Assuming that the sample is transparent outside
the region bounded in z by the focal point and detec-
tor (since we are not trying to image those outer re-
gions and they are not illuminated), we may combine
Eq. (19) with Eq. (21) to get

um;n ¼ ðu0Þm;n expf−pθðnÞðmΔxÞg; ð22Þ

where

θðnÞ ¼ tan−1

�
zð0Þp − zð0Þs

xð0Þp − xð0Þs þ nΔx

�
; rð0Þs ¼ ðxð0Þs ; zð0Þs Þ;

rð0Þp ¼ ðxð0Þp ; zð0Þp Þ: ð23Þ

The complex attenuation is a sampled version of the
projection of the complex attenuation coefficient.
Furthermore, we see that by collecting data over a
range of n and m, we get a range of projection angles
over a volume of the sample, forming a subset of the
Radon transform of the attenuation coefficient ηðrÞ.
More details are provided in Appendix A, which also
addresses the three-dimensional case.

3. Experimental Validation of Computational Confocal
Tomography

A. System Implementation

In the experimental validation of the technique, we
consider a slightly modified configuration where a
sample is located on a planar mirror surface (see
Fig. 7). The “source amplitude” is determined by
the laser amplitude and the reflectivity of the mirror.
Each ray is attenuated by the sample projection in
the forward path during illumination, the reflectivity
of the mirror, and attenuated by the sample projec-
tion in the backscattered path (see Fig. 7)]. We fur-
ther incorporated large refractive index changes at
the air–sample interface, by refracting the rays via
Snell’s law (see Fig. 7). Also, the air–sample interface
may not be a concern if the sample is only expected
to vary beneath the coverslip, as long as the projec-
tion angles are properly adjusted. This only re-
quires knowledge of the sample thickness, which we
estimate using the quadratic term in the measured
phase error.

To collect the complex amplitude data, we em-
ployed a standard Michelson interferometer, shown
schematically in Fig. 8. A replica of the source and
the signal returning from the sample interfere,
and the interference pattern is detected by a digital
camera. The detected phase must be unwrapped; for
this experiment, the MATLAB built-in unwrap func-
tion performed the task sufficiently.

In the experiments we use a Nikon plano apochro-
mat objective with a numerical aperture of 0.75,
which provides about 97° of angular bandwidth
spread in the air (i.e., above the coverslip). The
source was a 10mW He–Ne laser at 632:8nm, and
a SBIG ST-402 camera was used to record the inter-
ference pattern magnified using a standard tele-
centric imaging system to a pixel spacing of 3:0 μm.
The sample was placed on the mirror at the work-
ing distance of the objective, and the mirror was
mounted on a translation stage, which was moved
transversely to the optical beam. The camera pixel
spacing effectively achieves 3:0 μm sampling at the
entrance aperture of the objective. The sample was
moved by a translation stage in steps of 3:0 μm be-
tween image captures, using a Physik Instrumente
C-844 controller and M224 motors. We performed
a one-dimensional scan, and, hence, the slant stack
and final image are two dimensional. As described
earlier, each complex data set recorded at the detec-

Fig. 6. Rays corresponding to the ðn ¼ 2Þ column of the slant-
stack data with sheared coordinates to obtain vertical projection.

Fig. 7. Description of a sample-on-mirror system.

Fig. 8. Schematic diagram of a spatial heterodyne system for de-
tection of the complex amplitude of the signal from the object.
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tor at a point in the scan provides a new row for the
slant stack (see Fig. 5).

B. Reconstruction of the Sample Image

To demonstrate the capability of our method to re-
construct the image in the presence of occlusion and
varying reflectivity and to validate the performance
of the method experimentally, we prepared a special
sample. The sample consists of nonreflective stripes
printed on the mirror. We also placed a coverslip over
the mirror and placed an opaque fiber onto the cover-
slip, parallel to the stripes, as shown in Fig. 9.
The sample (see Fig. 9) was scanned in one di-

mension along the direction perpendicular to the fi-
ber and the opaque stripes (x direction in Fig. 9);
thus, the reconstructed image would provide a two-
dimensional cross section of the sample similar to
that shown in Fig. 9(b). The slant-stack data col-
lected for this sample are shown in Fig. 10, both with
and without the correction of the deterministic
term u0ðrs; rpÞ.
The camera image was averaged over the perpen-

dicular direction (y direction) to produce the row of
slant-stack data. Note that the final image will be
in the x − z plane. As the image shows, there were
approximately 750 pixels across the camera, and the
image was captured for 400 scanning steps. The dark
horizontal bands of the slant stack correspond to the
images where the focus was on the dark stripes on
the mirror; hence, there was no return signal at all.
The diagonal bands correspond to the partial occlu-
sion caused by the fiber, as it moves across the beam.
There are two such stripes because it occluded both
the converging signal before reflecting on the mirror,
and the diverging signal after reflection.
The inverse Radon transform of this data was

computed using filtered backprojection (using the

piecewise-linear rays described earlier) to produce
the image shown in Fig. 11. As the attenuation is
defined to be positive everywhere, we were able to
reduce artifacts by clamping the data values at zero.
Furthermore, the stripes were much darker than the
fiber, so saturation of the pixel values was performed
to allow the weaker fiber image to be more visible.
The experimental results in Fig. 11 show that the im-
age of the stripes and the fiber can be distinguished.

4. Discussion

We show how the data from the aperture of a scan-
ning confocal system can be used to perform a tomo-
graphic reconstruction of the sample attenuation and
refractive index, as well as the reflectivity at the focal
point. We demonstrated this method experimentally
in two dimensions, using a sample consisting of a
varying reflectivity mirror with an occluding object
above it. The approach assumes minimal scattering
and that ray paths follow straight lines within the
sample.

The axial resolution within the straight-ray ap-
proximation for the tomographic reconstruction cor-
responds to approximately 2:6 μm, assuming that it is
based on collected spatial bandwidth representing a
point. Of course, this is an incomplete description of
the imaging performance, as this bandwidth is only

Fig. 9. Description of the measured sample: (a) three-dimen-
sional view and (b) cross-sectional view.

Fig. 10. Amplitude of slant stack for the sample of Fig. 9: (a) raw
and (b) corrected for deterministic variation.
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partly filled in the k space (see Appendix A), lead-
ing to artifacts associated with limited-angle tomo-
graphy. Moreover, within the sample the resolution
would be scaled by the inverse of the index, as the
range of angles is reduced. Also, in the presence of
occlusion, as in the experiment we have conducted,
the actual range of rays collected is obviously re-
duced further, as some rays may be blocked. This
would also manifest as a shadow artifact extending
axially from the occlusion, covering the region of the
image from which no rays can be collected by the ob-
jective. If the occlusion is larger than the width of the
converging beam, the shadow will reach the object,
covering the completely occluded region.
As noted in Section 1, conventional computed to-

mography involves the collection of some angular
range of projections, with a fixed field of view deter-
mined by the size of the detector, while here we have
a fixed angular range determined by the objective,
and we collect data over the field of view serially.
As a result, while our angular range is limited by
the hardware, the field of view imaged is essentially
unlimited in the transverse direction. This trade-off
could be useful in applications where rotating or cir-
cumnavigating the desired region of the sample is
not possible, for example, in imaging near the surface
of the skin.
The technique could also be applicable to imaging

biological samples, which contain mostly small index
variations in addition to highly attenuating regions
(e.g., mitochondria and nuclei). It also should be
noted that the method can be easily integrated with
standard laser scanning confocal microscopy sys-
tems. Also, the method could be adapted to other sys-
tem geometries, such as transmissive or reflective, by
adapting the reconstruction algorithm using knowl-
edge of the ray paths.

Appendix A: Three-Dimensional Sheared Radon
Transform

Here we extend the idea to three dimensions and
review the k-space description of the Radon trans-
form data. First we note how the rearrangement
of rays from Fig. 4 to Fig. 5(b) can be directly ex-
tended to three dimensions. The detector pixels
and focal plane locations fall on planes parallel to the

y − x plane, as in Fig. 12, and the collection of slant-
stack data now forms a three-dimensional cube
of data.

The collection of data corresponding to a given de-
tector pixel now describes a projection at some angle
in both x and y, corresponding to the pixel’s relation-
ship to the focal point. In three dimensions, we have
shears both in x and y. So the coordinate transform
for both shears would be

ðx; y; zÞ → ðx − z tan θxz; y − z tan θyz; zÞ; ðA1Þ

which we can write in matrix form as

x0 ¼ Ax; ðA2Þ

where x ¼ ðx; y; zÞT, as usual [we will also inter-
changeably use notation such as f ðxÞ ¼ f ðx; y; zÞ
when convenient], and we similarly will use k ¼
ðkx; ky; kzÞT for the frequency domain. The shearing
matrix is

Aθxz;θzx;θyz;θzy ¼
0
@ 1 0 − tan θzx

0 1 − tan θzy
− tan θxz − tan θyz 1

1
A;

ðA3Þ

where the x and y coordinates are only sheared with
respect to z, or vice versa. In the case of Eq. (A2) we
have A0;θzx;0;θzy . Then the shearing of the k space that
results from the shearing of the coordinate system is

FðkÞ ¼ FTff ðxÞg;
FðA

−θzx;0;−θzy;0kÞ ¼ FTff ðA0;θzx;0;θzyxÞg: ðA4Þ

So when the x and y coordinates are sheared with re-
spect to z, the Fourier transform has its z coordinate
sheared with respect to x and y by the negative of the
shearing angles.

Now we reconsider the projection-slice theorem
with shearing transformations. From the usual zero-
angle starting point:

Fig. 11. Inverse Radon transform of slant-stack data.

Fig. 12. Ray between focal point and detector pixel in 3D.
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p0ðx; yÞ ¼
Z

f ðx; y; zÞdz;

P0ðkx; kyÞ ¼
ZZ

p0ðx; yÞe−j½xkxþyky�dxdy;

¼ Fðkx; ky; 0Þ:

ðA5Þ

So the unsheared projection is the horizontal slice of
the Fourier transform. The projection through a
sheared version of the data will be the horizontal
slice of the sheared data’s Fourier transform, which
is itself a sheared version of the original Fourier
transform from Eq. (A4).
Consider sheared data:

gðxÞ ¼ f ðA0;θzx;0;θzyxÞ;
¼ f ðx − z tan θzx; y − z tan θzx; zÞ;

GðkÞ ¼ FðA
−θzx;0;−θzy;0kÞ;

¼ Fðkx; ky; kz þ kx tan θzx þ ky tan θzyÞ: ðA6Þ

The projection of these data,

pθðx; yÞ ¼
Z

gðx; y; zÞdz;

Pθðkx; kyÞ ¼ Gðkx; ky; 0Þ;
¼ Fðkx; ky; 0þ kx tan θzx þ ky tan θzyÞ; ðA7Þ

is a slice through a sheared plane of the Fourier
transform. Also we can see that the kx and ky dimen-
sions have not been scaled (as they are in the case of
rotation). Hence, the sample spacing in those dimen-
sions remains unchanged with shearing. So interpo-
lation in kx and ky is not needed.
Now we consider sampled k-space data. If the pro-

jection is sampled with spacing as Δ in x and y, then
the sampling frequency is Δ−1. An N-point discrete
Fourier transform (DFT) of the zeroth projection will
produce samples in k space with spacing ðNΔÞ−1 in
both kx and ky. The k-space samples will, therefore,
be at locations ððNΔÞ−1s; ðNΔÞ−1t; 0Þ, where s and t
are integers. For a sheared projection, the locations
of k-space samples for the DFT will fall on spatial
frequencies (see Fig. 13):

ðkx; ky; kzÞ ¼ ððNΔÞ−1s; ðNΔÞ−1t; ðNΔÞ−1s tan θzx
þ ðNΔÞ−1t tan θzyÞ: ðA8Þ

The volume corresponding to each pixel in k
space is

ΔkxΔkyΔkz ¼ ½ðNΔÞ−1�½ðNΔÞ−1�½ðNΔÞ−1s tanΔθ
þ ðNΔÞ−1t tanΔθ�;

¼ ðNΔxÞ−3 tanΔθðsþ tÞ; ðA9Þ

where Δθ is the angular spacing of the projections,
which we have assumed is constant:

ΔkxΔkyΔkz ¼ ½ðNΔÞ−1�½ðNΔÞ−1�½ðNΔÞ−1s tanΔθðmxÞ
þ ðNΔÞ−1t tanΔθðmyÞ�;

ðA10Þ
where ΔθðmxÞ and ΔθðmyÞ are the angle spacing
between successive detector pixels and the focus at
pixel numbers mx and my. If we assume these are
the constant Δθ, we get

ΔkxΔkyΔkz ¼ ðNΔxÞ−3 tanΔθðsþ tÞ: ðA11Þ

The density of pixels is, therefore, the inverse of
this, and the amplitude of the filter needed to
normalize the pixel density in a backprojection
algorithm would be the inverse again of the pixel
density. So the appropriate backprojection filter is
a linear high-pass filter similar to the rotational case:

HðkÞ ∝ jkx þ kyj: ðA12Þ
However, with very large numerical apertures, the
change in angle between successive detector pixels
becomes significantly smaller at large angles, and
a filter that more accurately fits Eq. (A10) must
be used.
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